Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Ethenzamide-gentisic acid-acetic acid (2/1/1)

#### Srinivasulu Aitipamula,<sup>a</sup>\* Pui Shan Chow<sup>a</sup> and Reginald B.H. Tan<sup>a,b</sup>\*

<sup>a</sup>Institute of Chemical and Engineering Sciences, A\*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, 627833 Singapore, and <sup>b</sup>Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117576 Singapore

Correspondence e-mail: srinivasulu\_aitipamula@ices.a-star.edu.sg, reginald\_tan@ices\_a-star\_edu.sg

Received 22 March 2010; accepted 1 April 2010

Key indicators: single-crystal X-ray study; T = 110 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.050; wR factor = 0.135; data-to-parameter ratio = 17.4.

In the title co-crystal solvate, 2-ethoxybenzamide-2,5dihydroxybenzoic acid-ethanoic acid (2/1/1), 2C<sub>9</sub>H<sub>11</sub>NO<sub>2</sub>--C7H6O4·C2H4O2, two nonsteroidal anti-inflammatory drugs, ethenzamide (systematic name: 2-ethoxybenzamide) and gentisic acid (systematic name: 2,5-dihydroxybenzoic acid), together with acetic acid (systematic name: ethanoic acid) form a four-component molecular assembly held together by  $N-H\cdots O$  and  $O-H\cdots O$  hydrogen bonds. This assembly features two symmetry-independent molecules of ethenzamide, forming supramolecular acid-amide heterosynthons with gentisic acid and acetic acid. These heterosynthons involve quite strong  $O-H \cdots O$  [ $O \cdots O = 2.5446$  (15) and 2.5327 (15) Å] and less strong N-H···O [N···O = 2.9550 (17) and 2.9542 (17) Å] hydrogen bonds. The overall crystal packing features several C-H···O and  $\pi$ - $\pi$  stacking interactions [centroid–centroid distance = 3.7792 (11) Å].

#### **Related literature**

For information on three polymorphs of a 1:1 co-crystal involving ethenzamide and gentisic acid, see: Aitipamula *et al.* (2009*a*). For other co-crystals of ethenzamide, see: Aitipamula *et al.* (2009*b*); Moribe *et al.* (2004). For related information on the drug activity of ethenzamide, see: Hirasawa *et al.* (1999). For the crystal structure of ethenzamide, see: Pagola & Stephens (2009). For related information on the drug activity of gentisic acid, see: Lorico *et al.* (1986). For more information on the supramolecular heterosynthons, see: Fleischman *et al.* (2003). For reviews on pharmaceutical co-crystals, see: Schultheiss & Newman (2009); Almarsson & Zaworotko (2004). For more information on the hydrogen bonding, see: Desiraju & Steiner (1999).



 $\gamma = 119.45 \ (3)^{\circ}$ 

Z = 2

V = 1343.5 (6) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.33 \times 0.29 \times 0.22 \text{ mm}$ 

19296 measured reflections 6594 independent reflections

6074 reflections with  $I > 2\sigma(I)$ 

 $\mu = 0.10 \text{ mm}^{-1}$ 

T = 110 K

 $R_{\rm int} = 0.025$ 

#### **Experimental**

Crystal data 2C<sub>9</sub>H<sub>11</sub>NO<sub>2</sub>·C<sub>7</sub>H<sub>6</sub>O<sub>4</sub>·C<sub>2</sub>H<sub>4</sub>O<sub>2</sub>  $M_r = 544.55$ Triclinic, *P*I a = 8.8083 (18) Å b = 8.8802 (18) Å c = 19.880 (4) Å a = 93.65 (3)°  $\beta = 93.55$  (3)°

#### Data collection

| Rigaku Saturn CCD area-detector            |
|--------------------------------------------|
| diffractometer                             |
| Absorption correction: multi-scan          |
| (Blessing, 1995)                           |
| $T_{\rm min} = 0.967, T_{\rm max} = 0.978$ |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.050$ | H atoms treated by a mixture of                            |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.135$               | independent and constrained                                |
| S = 1.11                        | refinement                                                 |
| 6594 reflections                | $\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$  |
| 380 parameters                  | $\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$ |

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | D-H        | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------|------------|--------------|--------------|--------------------------------------|
| N1-H1···O2                  | 0.926 (19) | 1.941 (18)   | 2.6472 (19)  | 131.6 (14)                           |
| $N1 - H2 \cdots O5^i$       | 0.90 (2)   | 2.085 (18)   | 2.9550 (17)  | 163.0 (15)                           |
| $N2-H7\cdots O4$            | 0.879 (18) | 1.959 (17)   | 2.6536 (16)  | 135.0 (17)                           |
| $N2-H10\cdots O9^{ii}$      | 0.912 (18) | 2.057 (17)   | 2.9542 (17)  | 167.4 (17)                           |
| O6-H11···O1 <sup>iii</sup>  | 1.02 (2)   | 1.53 (2)     | 2.5327 (15)  | 167.0 (18)                           |
| $O7-H16\cdots O5$           | 0.90 (2)   | 1.80 (2)     | 2.6183 (15)  | 149 (3)                              |
| O8−H19···O9 <sup>iv</sup>   | 0.96 (2)   | 1.77 (2)     | 2.7231 (16)  | 173 (2)                              |
| $O10-H20\cdots O3^v$        | 0.99 (2)   | 1.56 (2)     | 2.5446 (15)  | 171 (2)                              |
| $C8-H8A\cdots O1^{vi}$      | 0.99       | 2.46         | 3.3768 (19)  | 154                                  |
| $C13-H13\cdots O8^{vii}$    | 0.95       | 2.55         | 3.452 (2)    | 159                                  |
| $C14-H14\cdots O10^{viii}$  | 0.95       | 2.53         | 3.348 (2)    | 145                                  |

Symmetry codes: (i) x + 1, y + 1, z + 1; (ii) x - 1, y, z; (iii) x - 1, y - 1, z - 1; (iv) -x + 2, -y + 1, -z + 1; (v) x + 1, y, z; (vi) -x + 1, -y + 1, -z + 2; (vii) x - 1, y + 1, z; (viii) -x, -y + 1, -z + 1.

Data collection: *CrystalClear* (Rigaku, 2008); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

This work was supported by the Institute of Chemical and Engineering Sciences of A\*STAR (Agency for Science, Technology and Research), Singapore.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2192).

#### References

- Aitipamula, S., Chow, P. S. & Tan, R. B. H. (2009a). CrystEngComm, 11, 1823– 1827.
- Aitipamula, S., Chow, P. S. & Tan, R. B. H. (2009b). CrystEngComm, 11, 889–895.
- Almarsson, Ö. & Zaworotko, M. J. (2004). Chem. Commun. pp. 1889–1896.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Desiraju, G. R. & Steiner, T. (1999). *The Weak Hydrogen Bond in Structural Chemistry and Biology*, p. 13, IUCr Monographs on Crystallography, Vol. 9. Oxford University Press.
- Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Walsh, R. D. B., Rodríguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des. 3, 909–919.

- Hirasawa, N., Okamoto, H. & Danjo, K. (1999). Chem. Pharm. Bull. 47, 417–420.
- Lorico, A., Masturzo, P., Villa, S., Salmona, M., Semeraro, N. & Gaetano, G. D. (1986). Biochem. Pharmacol. 35, 2443–2445.
- Moribe, K., Tsuchiya, M., Tozuka, Y., Yamaguchi, K., Oguchi, T. & Yamamoto, K. (2004). *Chem. Pharm. Bull.* **52**, 524–529.
- Pagola, S. & Stephens, P. W. (2009). Acta Cryst. C65, 0583-0586.
- Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Schultheiss, N. & Newman, A. (2009). Cryst. Growth Des. 9, 2950–2967.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2010). E66, o1045-o1046 [doi:10.1107/S1600536810012407]

#### Ethenzamide-gentisic acid-acetic acid (2/1/1)

#### S. Aitipamula, P. S. Chow and R. B. H. Tan

#### Comment

Ethenzamide (2-ethoxybenzamide) belongs to a non-steroidal anti-inflammatory drug (NSAID) used mainly in combination with other ingredients for the treatment of mild to moderate pains (Hirasawa *et al.*, 1999). The crystal structure of ethenzamide has been recently solved using the high-resolution powder X-ray diffraction (Pagola & Stephens, 2009). Gentisic acid (2,5-dihydroxybenzoic acid) is also a NSAID (Lorico *et al.*, 1986).

Pharmaceutical cocrystals can be defined as molecular complexes formed between a neutral or ionic active pharmaceutical ingredient (API) and a pharmaceutically acceptable compound that is a solid under ambient conditions (Almarsson & Zaworotko, 2004). With our interest in pharmaceutical cocrystals and polymorphism, we recently reported three polymorphs of a 1:1 cocrystal involving ethenzamide and gentisic acid, and showed that the dissolution rates of the cocrystal polymorphs were improved twice when compared to that of the parent ethenzamide (Aitipamula *et al.*, 2009a).

In attempt to prepare pure polymorphs of a cocrystal involving ethenzamide and gentisic acid, they were cocrystallized in 1:1 molar ratio from several organic solvents. Whereas all the crystallization batches resulted in reported 1:1 cocrystal polymorphs (Aitipamula *et al.*, 2009a), crystallization from acetic acid yielded a solvate in which the ethenzamide, gentisic acid, and acetic acid were present in 2:1:1 molar ratio. We present here its crystal structure and analyze the hydrogen bonding.

The crystal structure contains two molecules of ethenzamide, one molecule of gentisic acid and one molecule of acetic acid in the asymmetric unit (Fig. 1). In the structure, gentisic acid and acetic acid molecules are engaged in the formation of acid-amide heterosynthons with symmetry independent molecules of ethenzamide involving quite strong O—H···O [O···O = 2.5446 (15) and 2.5327 (15) Å] and less strong N—H···O [N···O = 2.9550 (17) and 2.9542 (17) Å] hydrogen bonds (Table 1) (Desiraju & Steiner, 1999). The *anti*-N—H of the primary amide of ethenzamide and the 2-hydroxy group of gentisic acid form an intramolecular N—H···O [N···O = 2.6472 (19) and 2.6536 (16) Å] and O—H···O [O···O = 2.6183 (15)] hydrogen bonds, respectively (Table 1). Hydroxy atom of O8 of the gentisic acid acts as a hydrogen bond donor to atom O9 of the acetic acid at (2-x, 1-y, 1-z), and generates a four-component molecular assembly which involves two molecules of ethenzamide, one molecule each of gentisic acid and acetic acid (Fig. 2). It is worth mentioning that the solvent (acetic acid) molecule is an integral part of the four-component molecular assembly, which is bonded in the same way as the remaining constituents that participate in the heterosynthon formation. The four-component molecular assemblies are further stabilized in the crystal structure by various C—H···O interactions (Table 1) (Desiraju & Steiner, 1999), and by the  $\pi$ - $\pi$  stacking interaction involving the phenyl rings of the molecules of ethenzamide and gentisic acid: Cg1···Cg2 (1-x, 1-y, 1-z) = 3.7792 (11) Å, where Cg1 and Cg2 denote the centroids of the rings C1—C6 and C19—C24 of ethenzamide and gentisic acid, respectively (Fig. 3).

In the light of the overwhelming interest in the development of pharmaceutical cocrystals for improving the physicochemical properties of the APIs (Schultheiss & Newman, 2009), the title cocrystal solvate reported here presents some special features. First, it contains two APIs and thus can be considered as a multi-API cocrystal. Second, it contains the pharmaceutically acceptable acetic acid in the crystal structure. These two aspects make the title cocrystal solvate a potential solid form for development of a combination drug involving ethenzamide and gentisic acid.

#### Experimental

The title cocrystal solvate was obtained by slow evaporation of a glacial acetic acid (5 ml) solution of a 1:1 molar ratio of ethenzamide (100 mg, 0.605 mmol) and gentisic acid (93.3 mg, 0.605 mmol) at ambinent conditions. The block-shaped crystals, the dimensions of which were typically as those of the used sample for data collection, were obtained within 7 days.

#### Refinement

Though all the H-atoms could be dinstinguished in the difference electron density map, the H-atoms bonded to C-atoms were included at the geometrically idealized positions and refined in riding-model approximation with C—H = 0.95 Å (aryl), 0.99 Å (methylene), and 0.98 Å (methyl).  $Uiso(H)_{aryl/methylene}=1.2 Ueq(C)$  and  $Uiso(H)_{methyl}=1.5 Ueq(C)$ . The positional parameters of the H-atoms bonded to N and O were allowed to be refined freely while  $Uiso(H)_{amine}=1.2 Ueq(N)$  and  $Uiso(H)_{hydroxyl}=1.5 Ueq(O)$ .

#### **Figures**



Fig. 1. The title molecules of ethenzamide, gentisic acid and aceitic acid with the atom labels and 50% probability displacement ellipsoids for non-H atoms.



Fig. 2. The hydrogen bonded four-component molecular assembly in the crystal structure of the title cocrystal solvate. Atoms participating in the hydrogen bonding were labelled.



Fig. 3. Section of the crystal structure, showing the  $\pi$ - $\pi$  stacking interaction between the aromatic rings of the four-component molecular assemblies.

#### 2-ethoxybenzamide—2,5-dihydroxybenzoic acid—ethanoic acid (2/1/1)

| Crystal data                                   |                                                |
|------------------------------------------------|------------------------------------------------|
| $2C_9H_{11}NO_2\cdot C_7H_6O_4\cdot C_2H_4O_2$ | <i>Z</i> = 2                                   |
| $M_r = 544.55$                                 | F(000) = 576                                   |
| Triclinic, $P\overline{1}$                     | $D_{\rm x} = 1.346 {\rm ~Mg~m}^{-3}$           |
| Hall symbol: -P 1                              | Mo K $\alpha$ radiation, $\lambda = 0.71073$ Å |
| a = 8.8083 (18)  Å                             | Cell parameters from 3760 reflections          |
| b = 8.8802 (18)  Å                             | $\theta = 2.1 - 31.0^{\circ}$                  |
| c = 19.880 (4)  Å                              | $\mu = 0.10 \text{ mm}^{-1}$                   |
| $\alpha = 93.65 \ (3)^{\circ}$                 | T = 110  K                                     |
|                                                |                                                |

 $\beta = 93.55 (3)^{\circ}$   $\gamma = 119.45 (3)^{\circ}$  $V = 1343.5 (6) \text{ Å}^3$ 

#### Data collection

| Rıgaku Saturn CCD area-detector<br>diffractometer     | 6594 independent reflections                                              |
|-------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube              | 6074 reflections with $I > 2\sigma(I)$                                    |
| graphite                                              | $R_{\rm int} = 0.025$                                                     |
| ω scans                                               | $\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$ |
| Absorption correction: multi-scan<br>(Blessing, 1995) | $h = -11 \rightarrow 11$                                                  |
| $T_{\min} = 0.967, T_{\max} = 0.978$                  | $k = -11 \rightarrow 9$                                                   |
| 19296 measured reflections                            | <i>l</i> = −26→24                                                         |

#### Refinement

| Refinement on $F^2$             | Secondary atom site location: difference Fourier map                                                                                                     |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Hydrogen site location: difference Fourier map                                                                                                           |
| $R[F^2 > 2\sigma(F^2)] = 0.050$ | H atoms treated by a mixture of independent and constrained refinement                                                                                   |
| $wR(F^2) = 0.135$               | $w = 1/[\sigma^2(F_o^2) + (0.0677P)^2 + 0.2882P]$<br>where $P = (F_o^2 + 2F_c^2)/3$                                                                      |
| <i>S</i> = 1.11                 | $(\Delta/\sigma)_{\rm max} = 0.001$                                                                                                                      |
| 6594 reflections                | $\Delta \rho_{max} = 0.25 \text{ e } \text{\AA}^{-3}$                                                                                                    |
| 380 parameters                  | $\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$                                                                                                   |
| 0 restraints                    | Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008),<br>Fc <sup>*</sup> =kFc[1+0.001xFc <sup>2</sup> $\lambda^3$ /sin(2 $\theta$ )] <sup>-1/4</sup> |

Block, yellow

 $0.33 \times 0.29 \times 0.22 \text{ mm}$ 

Primary atom site location: structure-invariant direct Extinction coefficient: 0.0054 (18)

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|    | x            | у            | Ζ           | $U_{\rm iso}*/U_{\rm eq}$ |
|----|--------------|--------------|-------------|---------------------------|
| O4 | 0.18598 (11) | 0.96579 (12) | 0.43017 (5) | 0.0280 (2)                |

| 09         | 1.05478 (12)               | 0.54627 (13)               | 0.63748 (5)              | 0.0319 (2)                   |
|------------|----------------------------|----------------------------|--------------------------|------------------------------|
| O3         | -0.22283 (12)              | 0.57234 (13)               | 0.51754 (5)              | 0.0324 (2)                   |
| O10        | 0.76432 (12)               | 0.38996 (13)               | 0.61300 (5)              | 0.0316 (2)                   |
| H20        | 0.781 (2)                  | 0.464 (3)                  | 0.5756 (10)              | 0.047*                       |
| N2         | 0.06949 (14)               | 0.72419 (16)               | 0.51542 (6)              | 0.0281 (2)                   |
| H10        | 0.079 (2)                  | 0.668 (2)                  | 0.5509 (9)               | 0.034*                       |
| H7         | 0.159 (2)                  | 0.811 (2)                  | 0.5000 (9)               | 0.034*                       |
| C16        | -0.09157 (16)              | 0.68847 (16)               | 0.49396 (6)              | 0.0249 (2)                   |
| C11        | 0.01615 (16)               | 0.92217 (16)               | 0.41021 (6)              | 0.0251 (3)                   |
| C12        | -0.02542 (17)              | 1.00581 (18)               | 0.36157 (7)              | 0.0295 (3)                   |
| H12        | 0.0654                     | 1.0958                     | 0.3409                   | 0.035*                       |
| C18        | 0.49661 (17)               | 1.13984 (19)               | 0.43493 (7)              | 0.0325 (3)                   |
| H18A       | 0.5037                     | 1.1604                     | 0.4843                   | 0.049*                       |
| H18B       | 0.5932                     | 1.2403                     | 0.4180                   | 0.049*                       |
| H18C       | 0.5050                     | 1.0356                     | 0.4229                   | 0.049*                       |
| C17        | 0.32440 (16)               | 1.11405 (17)               | 0.40346 (7)              | 0.0285 (3)                   |
| H17A       | 0.3150                     | 1.2191                     | 0.4149                   | 0.034*                       |
| H17B       | 0.3155                     | 1.0925                     | 0.3535                   | 0.034*                       |
| C10        | -0.11871 (16)              | 0.78677 (16)               | 0.44080 (6)              | 0.0246 (2)                   |
| C15        | -0.29227 (16)              | 0.74279 (17)               | 0.42099 (7)              | 0.0277 (3)                   |
| H15        | -0.3844                    | 0.6526                     | 0.4411                   | 0.033*                       |
| C13        | -0.19922(18)               | 0.95831 (18)               | 0 34313 (7)              | 0.0308(3)                    |
| H13        | -0 2264                    | 1 0162                     | 0 3099                   | 0.037*                       |
| C26        | 0 91047 (17)               | 0.43317(17)                | 0.65051 (7)              | 0.0283(3)                    |
| C14        | -0.33339(17)               | 0.82690(18)                | 0.37295(7)               | 0.0203(3)                    |
| H14        | -0.4521                    | 0.7951                     | 0.3605                   | 0.037*                       |
| C27        | 0.8867(2)                  | 0.3342(2)                  | 0.71097 (8)              | 0.0371(3)                    |
| H27A       | 0.9874                     | 0.3168                     | 0.7199                   | 0.056*                       |
| H27R       | 0.7791                     | 0.2209                     | 0.7020                   | 0.056*                       |
| H27C       | 0.8780                     | 0.2209                     | 0.7505                   | 0.056*                       |
| 01         | 0.91975(12)                | 0.71644(12)                | 1.01611 (5)              | 0.030                        |
| 02         | 0.91975(12)<br>0.45825(12) | 0.71044(12)<br>0.67508(13) | 0.93005(5)               | 0.0290(2)<br>0.0298(2)       |
| C1         | 0.45825 (12)               | 0.57974 (16)               | 0.93614 (6)              | 0.0278(2)<br>0.0247(2)       |
| N1         | 0.00078(10)<br>0.75912(17) | 0.84922 (16)               | 1.00868(6)               | 0.0247(2)<br>0.0322(3)       |
| н1         | 0.75712(17)                | 0.845(2)                   | 0.0026(0)                | 0.0322 (3)                   |
| 111<br>112 | 0.030(2)                   | 0.045(2)                   | 0.9920(9)                | 0.039                        |
| C7         | 0.829(2)                   | 0.320(2)<br>0.72148(16)    | 1.0438(3)                | $0.039^{\circ}$<br>0.0254(2) |
| C7         | 0.78900(10)<br>0.50360(17) | 0.72148(10)<br>0.55485(16) | 0.98983(0)<br>0.90874(6) | 0.0234(2)<br>0.0262(3)       |
| C2         | 0.30300(17)<br>0.71780(18) | 0.33485(10)<br>0.46025(17) | 0.90874(0)               | 0.0202(3)                    |
| C0<br>U6   | 0.71780 (18)               | 0.40023 (17)               | 0.91414(7)<br>0.0221     | 0.0291 (3)                   |
| П0<br>С9   | 0.0276                     | 0.4700                     | 0.9521                   | $0.035^{\circ}$              |
|            | 0.28/80(17)                | 0.03018 (19)               | 0.90704 (7)              | 0.0310(3)                    |
| ПОА        | 0.1940                     | 0.3434                     | 0.9228                   | 0.038*                       |
|            | 0.2710                     | 0.0394                     | 0.02679 (9)              | $0.038^{\circ}$              |
|            | 0.2032 (2)                 | 0.0079 (2)                 | 0.95078 (8)              | 0.0300(3)                    |
| пуа<br>Пор | 0.5025                     | 0.70(1                     | 0.9803                   | 0.038*                       |
| пув        | 0.108/                     | 0.122                      | 0.9232                   | 0.058*                       |
| п9C        | 0.3/33                     | 0.9123                     | 0.9201                   | 0.0344 (2)                   |
| C4         | 0.44999 (19)               | 0.29481 (18)               | 0.84136 (/)              | 0.0344 (3)                   |
| H4         | 0.3/39                     | 0.19/4                     | 0.8093                   | 0.041*                       |

| C3  | 0.39524 (18)  | 0.41077 (18)  | 0.86209 (7) | 0.0314 (3) |
|-----|---------------|---------------|-------------|------------|
| H3  | 0.2839        | 0.3921        | 0.8445      | 0.038*     |
| C5  | 0.61151 (19)  | 0.31929 (18)  | 0.86680 (7) | 0.0330 (3) |
| H5  | 0.6489        | 0.2402        | 0.8519      | 0.040*     |
| O8  | 0.70122 (13)  | 0.23351 (13)  | 0.25999 (5) | 0.0327 (2) |
| H19 | 0.784 (3)     | 0.317 (3)     | 0.2955 (10) | 0.049*     |
| O6  | 0.13707 (13)  | -0.09895 (13) | 0.11728 (5) | 0.0319 (2) |
| H11 | 0.039 (3)     | -0.166 (3)    | 0.0787 (10) | 0.048*     |
| O5  | -0.01505 (12) | 0.03810 (13)  | 0.13600 (5) | 0.0327 (2) |
| O7  | 0.10781 (13)  | 0.29851 (13)  | 0.23160 (5) | 0.0325 (2) |
| H16 | 0.033 (3)     | 0.217 (3)     | 0.1981 (10) | 0.049*     |
| C24 | 0.41450 (17)  | 0.13298 (16)  | 0.20904 (6) | 0.0254 (2) |
| H24 | 0.4210        | 0.0417        | 0.1842      | 0.030*     |
| C22 | 0.54594 (17)  | 0.38590 (17)  | 0.29022 (6) | 0.0285 (3) |
| H22 | 0.6432        | 0.4691        | 0.3207      | 0.034*     |
| C23 | 0.55542 (16)  | 0.25175 (17)  | 0.25389 (6) | 0.0264 (3) |
| C19 | 0.26205 (16)  | 0.14500 (16)  | 0.19962 (6) | 0.0248 (2) |
| C25 | 0.11617 (17)  | 0.02315 (16)  | 0.14875 (6) | 0.0262 (3) |
| C21 | 0.39528 (17)  | 0.39826 (17)  | 0.28208 (7) | 0.0285 (3) |
| H21 | 0.3894        | 0.4890        | 0.3076      | 0.034*     |
| C20 | 0.25202 (17)  | 0.27906 (17)  | 0.23681 (6) | 0.0263 (3) |
|     |               |               |             |            |

### Atomic displacement parameters $(Å^2)$

|     | $U^{11}$   | $U^{22}$   | U <sup>33</sup> | $U^{12}$   | $U^{13}$    | U <sup>23</sup> |
|-----|------------|------------|-----------------|------------|-------------|-----------------|
| O4  | 0.0206 (4) | 0.0310 (5) | 0.0326 (5)      | 0.0122 (4) | 0.0044 (3)  | 0.0081 (4)      |
| 09  | 0.0255 (4) | 0.0373 (5) | 0.0296 (5)      | 0.0130 (4) | 0.0020 (3)  | 0.0044 (4)      |
| O3  | 0.0221 (4) | 0.0334 (5) | 0.0383 (5)      | 0.0106 (4) | 0.0038 (4)  | 0.0089 (4)      |
| O10 | 0.0241 (4) | 0.0338 (5) | 0.0340 (5)      | 0.0119 (4) | 0.0045 (4)  | 0.0054 (4)      |
| N2  | 0.0215 (5) | 0.0322 (6) | 0.0288 (5)      | 0.0116 (4) | 0.0025 (4)  | 0.0071 (4)      |
| C16 | 0.0222 (5) | 0.0254 (6) | 0.0258 (6)      | 0.0112 (5) | 0.0028 (4)  | -0.0010 (4)     |
| C11 | 0.0230 (5) | 0.0271 (6) | 0.0257 (6)      | 0.0136 (5) | 0.0007 (4)  | -0.0018 (5)     |
| C12 | 0.0292 (6) | 0.0305 (6) | 0.0301 (6)      | 0.0160 (5) | 0.0026 (5)  | 0.0035 (5)      |
| C18 | 0.0246 (6) | 0.0338 (7) | 0.0383 (7)      | 0.0130 (5) | 0.0055 (5)  | 0.0097 (6)      |
| C17 | 0.0243 (6) | 0.0285 (6) | 0.0314 (6)      | 0.0115 (5) | 0.0059 (5)  | 0.0068 (5)      |
| C10 | 0.0234 (6) | 0.0246 (6) | 0.0251 (6)      | 0.0121 (5) | 0.0010 (4)  | -0.0025 (4)     |
| C15 | 0.0234 (6) | 0.0258 (6) | 0.0308 (6)      | 0.0111 (5) | -0.0010 (5) | -0.0037 (5)     |
| C13 | 0.0327 (7) | 0.0301 (7) | 0.0317 (6)      | 0.0185 (5) | -0.0046 (5) | -0.0006 (5)     |
| C26 | 0.0293 (6) | 0.0302 (6) | 0.0275 (6)      | 0.0166 (5) | 0.0049 (5)  | 0.0002 (5)      |
| C14 | 0.0254 (6) | 0.0301 (7) | 0.0359 (7)      | 0.0149 (5) | -0.0050 (5) | -0.0040 (5)     |
| C27 | 0.0446 (8) | 0.0372 (8) | 0.0330 (7)      | 0.0220 (6) | 0.0083 (6)  | 0.0079 (6)      |
| 01  | 0.0282 (4) | 0.0290 (5) | 0.0326 (5)      | 0.0159 (4) | -0.0005 (4) | -0.0008 (4)     |
| O2  | 0.0302 (5) | 0.0331 (5) | 0.0305 (5)      | 0.0195 (4) | 0.0020 (4)  | 0.0017 (4)      |
| C1  | 0.0276 (6) | 0.0228 (6) | 0.0231 (6)      | 0.0117 (5) | 0.0045 (4)  | 0.0048 (4)      |
| N1  | 0.0356 (6) | 0.0299 (6) | 0.0338 (6)      | 0.0201 (5) | -0.0035 (5) | -0.0042 (5)     |
| C7  | 0.0280 (6) | 0.0238 (6) | 0.0253 (6)      | 0.0130 (5) | 0.0050 (4)  | 0.0054 (4)      |
| C2  | 0.0299 (6) | 0.0275 (6) | 0.0235 (6)      | 0.0154 (5) | 0.0062 (5)  | 0.0060 (5)      |
| C6  | 0.0309 (6) | 0.0281 (6) | 0.0306 (6)      | 0.0162 (5) | 0.0053 (5)  | 0.0039 (5)      |
|     |            |            |                 |            |             |                 |

| C8  | 0.0275 (6) | 0.0372 (7) | 0.0342 (7) | 0.0186 (6) | 0.0047 (5)  | 0.0091 (5)  |
|-----|------------|------------|------------|------------|-------------|-------------|
| C9  | 0.0370 (7) | 0.0420 (8) | 0.0474 (8) | 0.0261 (7) | 0.0089 (6)  | 0.0101 (6)  |
| C4  | 0.0375 (7) | 0.0292 (7) | 0.0298 (7) | 0.0123 (6) | 0.0017 (5)  | -0.0008 (5) |
| C3  | 0.0299 (6) | 0.0316 (7) | 0.0290 (6) | 0.0126 (5) | 0.0018 (5)  | 0.0025 (5)  |
| C5  | 0.0391 (7) | 0.0288 (7) | 0.0332 (7) | 0.0188 (6) | 0.0052 (5)  | -0.0001 (5) |
| O8  | 0.0291 (5) | 0.0363 (5) | 0.0357 (5) | 0.0198 (4) | -0.0039 (4) | -0.0006 (4) |
| O6  | 0.0344 (5) | 0.0295 (5) | 0.0336 (5) | 0.0193 (4) | -0.0058 (4) | -0.0050 (4) |
| O5  | 0.0278 (5) | 0.0350 (5) | 0.0357 (5) | 0.0176 (4) | -0.0032 (4) | -0.0034 (4) |
| O7  | 0.0290 (5) | 0.0329 (5) | 0.0383 (5) | 0.0185 (4) | 0.0006 (4)  | -0.0026 (4) |
| C24 | 0.0287 (6) | 0.0240 (6) | 0.0249 (6) | 0.0141 (5) | 0.0025 (4)  | 0.0037 (4)  |
| C22 | 0.0297 (6) | 0.0260 (6) | 0.0257 (6) | 0.0110 (5) | 0.0007 (5)  | 0.0016 (5)  |
| C23 | 0.0260 (6) | 0.0278 (6) | 0.0266 (6) | 0.0142 (5) | 0.0021 (4)  | 0.0054 (5)  |
| C19 | 0.0255 (6) | 0.0235 (6) | 0.0243 (6) | 0.0113 (5) | 0.0019 (4)  | 0.0037 (4)  |
| C25 | 0.0271 (6) | 0.0255 (6) | 0.0266 (6) | 0.0135 (5) | 0.0029 (4)  | 0.0040 (5)  |
| C21 | 0.0314 (6) | 0.0254 (6) | 0.0287 (6) | 0.0142 (5) | 0.0034 (5)  | 0.0012 (5)  |
| C20 | 0.0269 (6) | 0.0264 (6) | 0.0270 (6) | 0.0138 (5) | 0.0045 (4)  | 0.0051 (5)  |
|     |            |            |            |            |             |             |

Geometric parameters (Å, °)

| O4—C11   | 1.3720 (15) | C1—C7   | 1.4965 (19) |
|----------|-------------|---------|-------------|
| O4—C17   | 1.4466 (16) | N1—C7   | 1.3256 (17) |
| O9—C26   | 1.2289 (17) | N1—H1   | 0.930 (19)  |
| O3—C16   | 1.2555 (16) | N1—H2   | 0.90 (2)    |
| O10—C26  | 1.3112 (17) | С2—С3   | 1.395 (2)   |
| O10—H20  | 0.99 (2)    | C6—C5   | 1.385 (2)   |
| N2—C16   | 1.3269 (16) | С6—Н6   | 0.9500      |
| N2—H10   | 0.913 (18)  | C8—C9   | 1.506 (2)   |
| N2—H7    | 0.879 (18)  | C8—H8A  | 0.9900      |
| C16—C10  | 1.4924 (19) | C8—H8B  | 0.9900      |
| C11—C12  | 1.3913 (19) | С9—Н9А  | 0.9800      |
| C11—C10  | 1.4159 (18) | С9—Н9В  | 0.9800      |
| C12—C13  | 1.3899 (18) | С9—Н9С  | 0.9800      |
| C12—H12  | 0.9500      | C4—C5   | 1.386 (2)   |
| C18—C17  | 1.5058 (18) | C4—C3   | 1.386 (2)   |
| C18—H18A | 0.9800      | C4—H4   | 0.9500      |
| C18—H18B | 0.9800      | С3—Н3   | 0.9500      |
| C18—H18C | 0.9800      | С5—Н5   | 0.9500      |
| C17—H17A | 0.9900      | O8—C23  | 1.3705 (16) |
| C17—H17B | 0.9900      | O8—H19  | 0.96 (2)    |
| C10-C15  | 1.4012 (17) | O6—C25  | 1.3134 (16) |
| C15—C14  | 1.384 (2)   | O6—H11  | 1.02 (2)    |
| C15—H15  | 0.9500      | O5—C25  | 1.2397 (16) |
| C13—C14  | 1.389 (2)   | O7—C20  | 1.3622 (16) |
| C13—H13  | 0.9500      | O7—H16  | 0.90 (2)    |
| C26—C27  | 1.499 (2)   | C24—C23 | 1.3798 (19) |
| C14—H14  | 0.9500      | C24—C19 | 1.4007 (18) |
| С27—Н27А | 0.9800      | C24—H24 | 0.9500      |
| С27—Н27В | 0.9800      | C22—C21 | 1.3849 (19) |
| С27—Н27С | 0.9800      | C22—C23 | 1.3941 (19) |

| O1—C7         | 1.2523 (16) | C22—H22     | 0.9500      |
|---------------|-------------|-------------|-------------|
| O2—C2         | 1.3644 (16) | C19—C20     | 1.4040 (18) |
| O2—C8         | 1.4444 (16) | C19—C25     | 1.4756 (19) |
| C1—C6         | 1.3963 (18) | C21—C20     | 1.3955 (19) |
| C1—C2         | 1.4112 (18) | C21—H21     | 0.9500      |
| C11—O4—C17    | 117.67 (10) | O1—C7—N1    | 121.31 (12) |
| С26—О10—Н20   | 113.5 (11)  | O1—C7—C1    | 118.85 (12) |
| C16—N2—H10    | 116.3 (11)  | N1—C7—C1    | 119.85 (12) |
| C16—N2—H7     | 119.0 (11)  | O2—C2—C3    | 122.70 (12) |
| H10—N2—H7     | 123.8 (16)  | O2—C2—C1    | 117.45 (11) |
| O3—C16—N2     | 121.07 (12) | C3—C2—C1    | 119.85 (12) |
| O3—C16—C10    | 119.00 (11) | C5—C6—C1    | 121.49 (13) |
| N2—C16—C10    | 119.93 (12) | С5—С6—Н6    | 119.3       |
| O4—C11—C12    | 122.18 (12) | С1—С6—Н6    | 119.3       |
| O4—C11—C10    | 117.69 (11) | O2—C8—C9    | 106.37 (12) |
| C12—C11—C10   | 120.13 (12) | O2—C8—H8A   | 110.5       |
| C13—C12—C11   | 120.32 (13) | С9—С8—Н8А   | 110.5       |
| С13—С12—Н12   | 119.8       | O2—C8—H8B   | 110.5       |
| C11—C12—H12   | 119.8       | С9—С8—Н8В   | 110.5       |
| C17—C18—H18A  | 109.5       | H8A—C8—H8B  | 108.6       |
| C17—C18—H18B  | 109.5       | С8—С9—Н9А   | 109.5       |
| H18A—C18—H18B | 109.5       | С8—С9—Н9В   | 109.5       |
| C17—C18—H18C  | 109.5       | Н9А—С9—Н9В  | 109.5       |
| H18A—C18—H18C | 109.5       | С8—С9—Н9С   | 109.5       |
| H18B-C18-H18C | 109.5       | H9A—C9—H9C  | 109.5       |
| 04-017-018    | 107.57 (11) | H9B-C9-H9C  | 109.5       |
| 04—C17—H17A   | 110.2       | C5-C4-C3    | 120.78 (13) |
| C18—C17—H17A  | 110.2       | С5—С4—Н4    | 119.6       |
| O4—C17—H17B   | 110.2       | C3—C4—H4    | 119.6       |
| С18—С17—Н17В  | 110.2       | C4—C3—C2    | 120.05 (13) |
| Н17А—С17—Н17В | 108.5       | С4—С3—Н3    | 120.0       |
| C15—C10—C11   | 117.89 (12) | С2—С3—Н3    | 120.0       |
| C15—C10—C16   | 116.73 (12) | C6—C5—C4    | 119.29 (13) |
| C11—C10—C16   | 125.37 (11) | С6—С5—Н5    | 120.4       |
| C14—C15—C10   | 121.93 (13) | С4—С5—Н5    | 120.4       |
| C14—C15—H15   | 119.0       | C23—O8—H19  | 109.3 (12)  |
| С10—С15—Н15   | 119.0       | C25—O6—H11  | 110.3 (11)  |
| C14—C13—C12   | 120.47 (13) | С20—О7—Н16  | 105.4 (13)  |
| C14—C13—H13   | 119.8       | C23—C24—C19 | 120.98 (12) |
| С12—С13—Н13   | 119.8       | C23—C24—H24 | 119.5       |
| O9—C26—O10    | 122.84 (13) | C19—C24—H24 | 119.5       |
| O9—C26—C27    | 122.78 (13) | C21—C22—C23 | 120.24 (12) |
| O10—C26—C27   | 114.38 (12) | C21—C22—H22 | 119.9       |
| C15—C14—C13   | 119.25 (12) | С23—С22—Н22 | 119.9       |
| C15—C14—H14   | 120.4       | O8—C23—C24  | 117.91 (12) |
| C13—C14—H14   | 120.4       | O8—C23—C22  | 122.62 (12) |
| C26—C27—H27A  | 109.5       | C24—C23—C22 | 119.46 (12) |
| С26—С27—Н27В  | 109.5       | C24—C19—C20 | 119.47 (12) |
| H27A—C27—H27B | 109.5       | C24—C19—C25 | 120.45 (12) |

| С26—С27—Н27С  | 109.5       | C20-C19-C25 | 120.02 (12) |
|---------------|-------------|-------------|-------------|
| H27A—C27—H27C | 109.5       | O5—C25—O6   | 122.74 (12) |
| Н27В—С27—Н27С | 109.5       | O5—C25—C19  | 121.85 (12) |
| C2—O2—C8      | 119.79 (11) | O6—C25—C19  | 115.40 (11) |
| C6—C1—C2      | 118.51 (12) | C22—C21—C20 | 120.82 (12) |
| C6—C1—C7      | 116.30 (12) | C22—C21—H21 | 119.6       |
| C2—C1—C7      | 125.14 (12) | C20-C21-H21 | 119.6       |
| C7—N1—H1      | 120.7 (11)  | O7—C20—C21  | 117.69 (12) |
| C7—N1—H2      | 117.4 (12)  | O7—C20—C19  | 123.28 (12) |
| H1—N1—H2      | 120.6 (16)  | C21—C20—C19 | 119.02 (12) |

Hydrogen-bond geometry (Å, °)

| D—H··· $A$                    | <i>D</i> —Н | H…A        | $D \cdots A$ | D—H··· $A$ |
|-------------------------------|-------------|------------|--------------|------------|
| N1—H1…O2                      | 0.926 (19)  | 1.941 (18) | 2.6472 (19)  | 131.6 (14) |
| N1—H2···O5 <sup>i</sup>       | 0.90 (2)    | 2.085 (18) | 2.9550 (17)  | 163.0 (15) |
| N2—H7…O4                      | 0.879 (18)  | 1.959 (17) | 2.6536 (16)  | 135.0 (17) |
| N2—H10···O9 <sup>ii</sup>     | 0.912 (18)  | 2.057 (17) | 2.9542 (17)  | 167.4 (17) |
| O6—H11…O1 <sup>iii</sup>      | 1.02 (2)    | 1.53 (2)   | 2.5327 (15)  | 167.0 (18) |
| O7—H16…O5                     | 0.90 (2)    | 1.80 (2)   | 2.6183 (15)  | 149 (3)    |
| O8—H19····O9 <sup>iv</sup>    | 0.96 (2)    | 1.77 (2)   | 2.7231 (16)  | 173 (2)    |
| O10—H20···O3 <sup>v</sup>     | 0.99 (2)    | 1.56 (2)   | 2.5446 (15)  | 171 (2)    |
| C8—H8A···O1 <sup>vi</sup>     | 0.99        | 2.46       | 3.3768 (19)  | 154        |
| C13—H13···O8 <sup>vii</sup>   | 0.95        | 2.55       | 3.452 (2)    | 159        |
| C14—H14···O10 <sup>viii</sup> | 0.95        | 2.53       | 3.348 (2)    | 145        |

Symmetry codes: (i) *x*+1, *y*+1, *z*+1; (ii) *x*-1, *y*, *z*; (iii) *x*-1, *y*-1, *z*-1; (iv) *-x*+2, *-y*+1, *-z*+1; (v) *x*+1, *y*, *z*; (vi) *-x*+1, *-y*+1, *-z*+2; (vii) *x*-1, *y*+1, *z*; (viii) *-x*, *-y*+1, *-z*+1.







